129 research outputs found

    Review of the ELI-NP-GBS low level rf and synchronization systems

    Get PDF
    The Gamma Beam System (GBS) of ELI-NP is a linac based gamma-source in construction at Magurele (RO) by the European consortium EuroGammaS led by INFN. Photons with tunable energy and with intensity and brilliance well beyond the state of the art will be produced by Compton back-scattering between a high quality electron beam (up to 740 MeV) and a 515 nm intense laser pulse. Production of very intense photon flux with narrow bandwidth requires multi-bunch operation at 100 Hz repetition rate. A total of 13 klystrons, 3 S-band (2856 MHz) and 10 C-band (5712 MHz) will power a total of 14 Travelling Wave accelerating sections (2 S-band and 12 C-band) plus 3 S-band Standing Wave cavities (a 1.6 cell RF gun and 2 RF deflectors). Each klystron is individually driven by a temperature stabilized LLRF module, for a maximum flexibility in terms of accelerating gradient, arbitrary pulse shaping (e.g. to compensate beam loading effects in multi-bunch regime) and compensation of long-term thermal drifts. In this paper, the whole LLRF system architecture and bench test results, the RF reference generation and distribution together with an overview of the synchronization system will be described

    Quantitative SWATH-based proteomic profiling of urine for the identification of endometrial cancer biomarkers in symptomatic women

    Get PDF
    BackgroundA non-invasive endometrial cancer detection tool that can accurately triage symptomatic women for definitive testing would improve patient care. Urine is an attractive biofluid for cancer detection due to its simplicity and ease of collection. The aim of this study was to identify urine-based proteomic signatures that can discriminate endometrial cancer patients from symptomatic controls.MethodsThis was a prospective case–control study of symptomatic post-menopausal women (50 cancers, 54 controls). Voided self-collected urine samples were processed for mass spectrometry and run using sequential window acquisition of all theoretical mass spectra (SWATH-MS). Machine learning techniques were used to identify important discriminatory proteins, which were subsequently combined in multi-marker panels using logistic regression.ResultsThe top discriminatory proteins individually showed moderate accuracy (AUC > 0.70) for endometrial cancer detection. However, algorithms combining the most discriminatory proteins performed well with AUCs > 0.90. The best performing diagnostic model was a 10-marker panel combining SPRR1B, CRNN, CALML3, TXN, FABP5, C1RL, MMP9, ECM1, S100A7 and CFI and predicted endometrial cancer with an AUC of 0.92 (0.96–0.97). Urine-based protein signatures showed good accuracy for the detection of early-stage cancers (AUC 0.92 (0.86–0.9)).ConclusionA patient-friendly, urine-based test could offer a non-invasive endometrial cancer detection tool in symptomatic women. Validation in a larger independent cohort is warranted

    Initial Results from the Royal College of Radiologists' UK National Audit of Anal Cancer Radiotherapy 2015

    Get PDF
    Aims: UK guidance was recently developed for the treatment of anal cancer using intensity-modulated radiotherapy (IMRT). We audited the current use of radiotherapy in UK cancer centres for the treatment of anal cancer against such guidance. We describe the acute toxicity of IMRT in comparison with patient population in the audit treated with two-phase conformal radiotherapy and the previous published data from two-phase conformal radiotherapy, in the UK ACT2 trial. Materials and methods: A Royal College of Radiologists' prospective national audit of patients treated with radiotherapy in UK cancer centres was carried out over a 6 month period between February and July 2015. Results: Two hundred and forty-two cases were received from 40/56 cancer centres (71%). In total, 231 (95%) underwent full dose radiotherapy with prophylactic nodal irradiation. Of these, 180 (78%) received IMRT or equivalent, 52 (22%) two-phase conformal (ACT2) technique. The number of interruptions in radiotherapy treatment in the ACT2 trial was 15%. Interruptions were noted in 7% (95% confidence interval 0–14%) of courses receiving two-phase conformal and 4% (95% confidence interval 1–7%) of those receiving IMRT. The percentage of patients completing the planned radiotherapy dose, irrelevant of gaps, was 90% (95% confidence interval 82–98%) and 96% (95% confidence interval 93–99%), in two-phase conformal and IMRT respectively. The toxicity reported in the ACT2 trial, in patients receiving two-phase conformal in the audit and in patients receiving IMRT in the audit was: any toxic effect 71%, 54%, 48%, non-haematological 62%, 49%, 40% and haematological 26%, 13%, 18%, respectively. Conclusions: IMRT implementation for anal cancer is well underway in the UK with most patients receiving IMRT delivery, although its usage is not yet universal. This audit confirms that IMRT results in reduced acute toxicity and minimised treatment interruptions in comparison with previous two-phase conformal techniques

    Changes in the Proteome Profile of People Achieving Remission of Type 2 Diabetes after Bariatric Surgery

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-08-17, pub-electronic 2021-08-18Publication status: PublishedBariatric surgery (BS) results in metabolic pathway recalibration. We have identified potential biomarkers in plasma of people achieving type 2 diabetes mellitus (T2DM) remission after BS. Longitudinal analysis was performed on plasma from 10 individuals following Roux-en-Y gastric bypass (n = 7) or sleeve gastrectomy (n = 3). Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) was done on samples taken at 4 months before (baseline) and 6 and 12 months after BS. Four hundred sixty-seven proteins were quantified by SWATH-MS. Principal component analysis resolved samples from distinct time points after selection of key discriminatory proteins: 25 proteins were differentially expressed between baseline and 6 months post-surgery; 39 proteins between baseline and 12 months. Eight proteins (SHBG, TF, PRG4, APOA4, LRG1, HSPA4, EPHX2 and PGLYRP) were significantly different to baseline at both 6 and 12 months post-surgery. The panel of proteins identified as consistently different included peptides related to insulin sensitivity (SHBG increase), systemic inflammation (TF and HSPA4—both decreased) and lipid metabolism (APOA4 decreased). We found significant changes in the proteome for eight proteins at 6- and 12-months post-BS, and several of these are key components in metabolic and inflammatory pathways. These may represent potential biomarkers of remission of T2DM

    Elements in the Canine Distemper Virus M 3′ UTR Contribute to Control of Replication Efficiency and Virulence

    Get PDF
    Canine distemper virus (CDV) is a negative-sense, single-stranded RNA virus within the genus Morbillivirus and the family Paramyxoviridae. The Morbillivirus genome is composed of six transcriptional units that are separated by untranslated regions (UTRs), which are relatively uniform in length, with the exception of the UTR between the matrix (M) and fusion (F) genes. This UTR is at least three times longer and in the case of CDV also highly variable. Exchange of the M-F region between different CDV strains did not affect virulence or disease phenotype, demonstrating that this region is functionally interchangeable. Viruses carrying the deletions in the M 3′ UTR replicated more efficiently, which correlated with a reduction of virulence, suggesting that overall length as well as specific sequence motifs distributed throughout the region contribute to virulence

    Biomarkers in anal cancer: from biological understanding to stratified treatment

    Get PDF
    Squamous cell carcinomas of the anus and anal canal represent a model of a cancer and perhaps the first where level 1 evidence supported primary chemoradiotherapy (CRT) in treating locoregional disease with curative intent. The majority of tumours are associated with infection with oncogenic subtypes of human papilloma virus and this plays a significant role in their sensitivity to treatment. However, not all tumours are cured with CRT and there remain opportunities to improve outcomes in terms of oncological control and also reducing late toxicities. Understanding the biology of ASCC promises to allow a more personalised approach to treatment, with the development and validation of a range of biomarkers and associated techniques that are the focus of this review

    A Search for Coincident Neutrino Emission from Fast Radio Bursts with Seven Years of IceCube Cascade Events

    Get PDF
    This paper presents the results of a search for neutrinos that are spatially and temporally coincident with 22 unique, nonrepeating fast radio bursts (FRBs) and one repeating FRB (FRB 121102). FRBs are a rapidly growing class of Galactic and extragalactic astrophysical objects that are considered a potential source of high-energy neutrinos. The IceCube Neutrino Observatory\u27s previous FRB analyses have solely used track events. This search utilizes seven years of IceCube cascade events which are statistically independent of track events. This event selection allows probing of a longer range of extended timescales due to the low background rate. No statistically significant clustering of neutrinos was observed. Upper limits are set on the time-integrated neutrino flux emitted by FRBs for a range of extended time windows

    Graph Neural Networks for low-energy event classification & reconstruction in IceCube

    Get PDF
    IceCube, a cubic-kilometer array of optical sensors built to detect atmospheric and astrophysical neutrinos between 1 GeV and 1 PeV, is deployed 1.45 km to 2.45 km below the surface of the ice sheet at the South Pole. The classification and reconstruction of events from the in-ice detectors play a central role in the analysis of data from IceCube. Reconstructing and classifying events is a challenge due to the irregular detector geometry, inhomogeneous scattering and absorption of light in the ice and, below 100 GeV, the relatively low number of signal photons produced per event. To address this challenge, it is possible to represent IceCube events as point cloud graphs and use a Graph Neural Network (GNN) as the classification and reconstruction method. The GNN is capable of distinguishing neutrino events from cosmic-ray backgrounds, classifying different neutrino event types, and reconstructing the deposited energy, direction and interaction vertex. Based on simulation, we provide a comparison in the 1 GeV–100 GeV energy range to the current state-of-the-art maximum likelihood techniques used in current IceCube analyses, including the effects of known systematic uncertainties. For neutrino event classification, the GNN increases the signal efficiency by 18% at a fixed background rate, compared to current IceCube methods. Alternatively, the GNN offers a reduction of the background (i.e. false positive) rate by over a factor 8 (to below half a percent) at a fixed signal efficiency. For the reconstruction of energy, direction, and interaction vertex, the resolution improves by an average of 13%–20% compared to current maximum likelihood techniques in the energy range of 1 GeV–30 GeV. The GNN, when run on a GPU, is capable of processing IceCube events at a rate nearly double of the median IceCube trigger rate of 2.7 kHz, which opens the possibility of using low energy neutrinos in online searches for transient events.Peer Reviewe

    Searches for Neutrinos from LHAASO ultra-high-energy {\gamma}-ray sources using the IceCube Neutrino Observatory

    Full text link
    Galactic PeVatrons are Galactic sources theorized to accelerate cosmic rays up to PeV in energy. The accelerated cosmic rays are expected to interact hadronically with nearby ambient gas or the interstellar medium, resulting in {\gamma}-rays and neutrinos. Recently, the Large High Altitude Air Shower Observatory (LHAASO) identified 12 {\gamma}-ray sources with emissions above 100 TeV, making them candidates for PeV cosmic-ray accelerators (PeVatrons). While at these high energies the Klein-Nishina effect suppresses exponentially leptonic emission from Galactic sources, evidence for neutrino emission would unequivocally confirm hadronic acceleration. Here, we present the results of a search for neutrinos from these {\gamma}-ray sources and stacking searches testing for excess neutrino emission from all 12 sources as well as their subcatalogs of supernova remnants and pulsar wind nebulae with 11 years of track events from the IceCube Neutrino Observatory. No significant emissions were found. Based on the resulting limits, we place constraints on the fraction of {\gamma}-ray flux originating from the hadronic processes in the Crab Nebula and LHAASOJ2226+6057
    corecore